歡迎訪問:中國保健養(yǎng)豬網(wǎng) 您可以 登錄 本站瀏覽更多內容
綠葉公司規(guī)模豬場VIP活動專區(qū) 135高效保健養(yǎng)豬技術

高產(chǎn)母豬窩內體重變異的營養(yǎng)調控

2018-05-07 11:23:22來源:網(wǎng)絡作者:瀏覽:次 分享:

產(chǎn)仔數(shù)一直是衡量母豬繁殖效率的一個核心生產(chǎn)指標[1], 然而, 隨著現(xiàn)代育種技術的發(fā)展和養(yǎng)豬生產(chǎn)水平的提高, 母豬的產(chǎn)仔數(shù)也在不斷增加, 從1996年的窩產(chǎn)11.9頭, 提高到2006年的窩產(chǎn)13.8頭[2]。研究表明, 母豬產(chǎn)仔數(shù)與仔豬斷奶存活率、斷奶前日增重和斷奶時的平均體重呈負相關關系[3-4], 并且仔豬初生重低, 上市時間明顯延長[5]。同窩仔豬內, 低初生重仔豬競爭力較差, 難以搶到泌乳力好的乳頭, 導致獲得較少的被動免疫, 對應激和疾病的抵抗能力下降, 并且攝入的營養(yǎng)物質不足[6], 對它們的生存產(chǎn)生不利影響。

據(jù)報道, 窩產(chǎn)11頭仔豬和窩產(chǎn)15頭仔豬相比, 每頭豬平均體重從1.65 kg下降到1.42 kg, 窩內體重變異系數(shù)從0.160增加到0.187, 斷奶前的存活率從91.8%降到74.5% (表1) [7]。而且, 隨著窩產(chǎn)仔數(shù)的增加, 體重小的仔豬所占比例也在不斷增加, 而初生重低于1 kg的仔豬, 從出生到斷奶期間, 存活的可能性很小[6]。與此同時, 初生仔豬整齊度低導致斷奶后體重差異大, 對營養(yǎng)精準供給、管理效率提高和生產(chǎn)效益提升均造成極為不利的影響。因此, 深入分析初生仔豬窩內體重變異的影響因素, 研究揭示營養(yǎng)物質、營養(yǎng)源和營養(yǎng)水平對仔豬初生重和窩內整齊度的作用及機制, 對提高現(xiàn)代養(yǎng)豬生產(chǎn)水平和效益具有極為重要的意義。

1 初生仔豬窩內體重變異的影響因素

1.1 遺傳因素梅山豬作為我國的地方豬種, 以高產(chǎn)著名于世, 然而, 值得注意的是, 梅山豬在具有高產(chǎn)仔數(shù)的同時, 初生仔豬窩內體重變異較小, 這與其胎盤效率較高和子宮容積較大相關, 而且梅山母豬可通過自身代謝的調節(jié), 抑制部分胎兒的過快生長, 提高胎兒的同質性[8]。通過對不同品種的母豬進行比較發(fā)現(xiàn), 妊娠70-110 d后, 約克豬胎盤表面積、重量和長度增加40%, 而梅山豬的胎盤尺寸在這一時期變化較小, 但是, 梅山豬胎盤血管數(shù)目和直徑增加, 隨之血管密度增加1倍, 而約克豬血管密度呈下降趨勢, 以致妊娠110 d的梅山豬子宮有較高的胎兒重與胎盤重比例, 表現(xiàn)出較高的胎盤效率[9]。以上研究結果表明, 不同品種間, 胎盤效率對初生仔豬窩內體重變異有決定性的影響, 而胎盤血管的生成和分布可能是影響胎盤效率的重要因素。這為深入研究營養(yǎng)與血管生成和胎盤效率的關系, 進而為建立提高初生仔豬整齊度的營養(yǎng)調控理論和技術提供了重要的理論依據(jù)。

1.2 子宮位置研究發(fā)現(xiàn), 妊娠30 d, 胎兒的重量與子宮的位置無關;妊娠70 d, 體重較輕的胎兒集中在子宮頸端, 體重較重的胎兒集中在輸卵管端;妊娠104 d, 體重較輕胎兒集中在子宮頸端, 體重較重胎兒集中在輸卵管端。值得注意的是, 妊娠期胎盤血管密度從子宮頸到子宮角呈逐漸增加的趨勢, 胎盤血管是母體和胎盤胎兒之間進行物質和信息交換的樞紐, 胎盤血管密度分布的不同可能是導致不同子宮位置胎兒體重差異的重要原因[10]。因此, 深入研究母體營養(yǎng)與胎盤血管生成的關系, 有望為建立提高初生仔豬整齊度的營養(yǎng)理論和技術提供重要依據(jù)。
1.3 母豬胎次研究表明, 仔豬平均初生重不受胎次的影響, 但是初生仔豬窩內體重變異和初生重小于800 g的仔豬比例則隨胎次的增加而逐漸變大, 2胎、34胎、5胎的初生仔豬窩內體重變異系數(shù)分別為21.3%、23.2%和24.8%, 小于800 g的仔豬比例分別為6.2%、8.7%和13.6%[11]。進一步研究發(fā)現(xiàn), 隨著母豬年齡的增加, 尤其是5胎以后, 初生仔豬整齊度的下降可能與卵泡發(fā)育的變化和卵泡質量有關[12]。
通過以上分析發(fā)現(xiàn), 品種和子宮位置對仔豬初生整齊度的影響可能在根本上取決于胎盤血管生成和分布密度的不同, 而胎次對初生整齊度的影響則可能與卵泡發(fā)育和卵母細胞質量有關。卵泡發(fā)育、胎盤血管生成均離不開營養(yǎng)物質的合理供給, 因此, 為通過營養(yǎng)手段提高初生仔豬整齊度提供了潛在的理論基礎。
2 營養(yǎng)對高產(chǎn)母豬窩內體重變異的營養(yǎng)調控營養(yǎng)是動物賴以生存和繁殖的基礎。目前, 關于降低高產(chǎn)母豬窩內體重變異的營養(yǎng)研究主要集中在能量來源、蛋白質與氨基酸水平、功能性添加物3個方面。
2.1 能量來源目前研究能量對初生仔豬窩內體重變異的影響主要集中在能量來源部分, 所以, 本文重點討論能量來源對初生仔豬窩內體重變異的影響。
有研究表明, 在卵子形成期, 影響豬胚胎存活和發(fā)育, 因為卵母細胞成熟對胚胎發(fā)育的整齊度以及隨后初生重變異可能起著決定性作用[13]。因此, 在母豬配種前, 對母豬進行營養(yǎng)調控, 對降低窩內初生體重變異有很大作用[14]。
研究發(fā)現(xiàn), 從斷奶到發(fā)情階段, 在第1~5胎母豬 (長白×大白) 飼糧中[對照組采食基礎飼糧, 斷奶后采食量為3.5 kg/d, 基礎飼糧中凈能 (NE) 水平為9.4 MJ/kg, 粗蛋白質 (CP) 水平為156 g/kg, 可消化賴氨酸水平為6.8 g/kg]添加150 g/d的葡萄糖后顯著降低初生重變異[15]。又有研究發(fā)現(xiàn), 在妊娠最后1周到斷奶前階段, 根據(jù)等能等氮原則, 在多胎母豬 (Topigs 20和Topigs 30) 飼糧中, 泌乳期添加25 g/d葡萄糖+25 g/d乳糖, 斷奶后添加150 g/d葡萄糖+150 g/d乳糖 (泌乳期NE水平為9.5 MJ/kg, CP水平為16.5%;斷奶發(fā)情期NE水平為9.4 M J/kg, CP水平為15.8%, 采食量為3.6 kg/d) , 結果顯示, 試驗組初生仔豬窩內體重變異顯著降低[16]。這上述研究結果說明, 飼糧中添加葡萄糖有利于降低初生仔豬窩內體重變異。
另有研究表明, 根據(jù)等能等氮原則, 給后備母豬 (長白×大白) 分別飼喂含有淀粉、葡萄糖、動物脂肪的飼糧, 飼喂過36 min后, 葡萄糖組血漿胰島素水平高于脂肪組, 淀粉組血漿胰島素水平處于兩者中間[分別為 (62.0±12.2) μIU/m L、 (9.1±9.1) μIU/m L和 (43.5±10.1) μIU/m L], 3個組血漿胰島素水平最大值分別為 (65.6±5.4) μIU/m L、 (42.2±6.4) μIU/m L、 (57.7±6.3) μIU/m L[17]。同樣, 后備母豬 (長白×大白) 在發(fā)情周期內, 在等能等氮條件下飼喂玉米-豆粕型基礎飼糧, 與大豆油組相比, 淀粉組 (含20%玉米淀粉) 發(fā)情周期第14天和第21天餐后30 min的血漿胰島素水平較高, 且在妊娠第28天有更高的排卵率、胚胎數(shù)、胚胎重和胎盤重[18]。這些結果表明, 在發(fā)情周期內, 飼喂含有葡萄糖或部分淀粉替代飼糧, 可以調節(jié)血清胰島素水平, 從而促進胚胎整齊度的提高。
然而, 又有研究表明, 在斷奶發(fā)情期, 經(jīng)產(chǎn)母豬 (胎次平均為4.7胎, Topigs 20) 根據(jù)等能等氮原則分別飼喂葡萄糖+玉米淀粉、葡萄糖+玉米淀粉+動物油脂、動物油脂3種飼糧, 結果表明, 斷奶發(fā)情期間血漿胰島素和胰島素樣生長因子Ⅰ (IGF-Ⅰ) 水平無顯著變化, 但是進一步分析顯示, 斷奶后23 d, 各組間血漿胰島素水平有分離趨勢。因此, 斷奶后胰島素刺激飼糧 (添加淀粉、葡萄糖) 具有潛在刺激胰島素分泌的可能, 但是斷奶發(fā)情間隔太短可能不能有效刺激胰島素的產(chǎn)生[19], 所以對于胰島素刺激飼糧的應用可將關注點放在泌乳后期。
研究表明, 處于分解代謝狀態(tài)的母體, 胰島素刺激飼糧可能通過提高肝臟生長激素的結合, 刺激IGF-Ⅰ的產(chǎn)生[20]。在泌乳期, 通過飼喂高能脂肪、高能淀粉、低能脂肪、低能淀粉4種飼糧, 母豬飼喂富含淀粉飼糧與飼喂富脂飼糧對比發(fā)現(xiàn), 飼喂富含淀粉飼糧的母豬血漿IGF-Ⅰ水平在第7天、第21天、第22天較高, 并且在斷奶后第3天有增高趨勢 (234 ng/m L vs.205 ng/m L) ;同時發(fā)現(xiàn), 第21天血漿IGF-Ⅰ水平與第22天 (斷奶) 血漿促黃體素 (LH) 的脈動性和LH濃度升高有正相關趨勢, 而第22天血漿IGF-Ⅰ水平與第22天 (斷奶) 血漿LH的脈動性和LH濃度的升高有正相關關系[21];此外, 第22天 (斷奶) 血漿LH的脈動性與卵泡的尺寸存在正相關關系[22]。
因此, 在現(xiàn)代商業(yè)化生產(chǎn)中, 配種前飼喂胰島素刺激飼糧 (20%淀粉替代飼糧、添加150 g/d葡萄糖飼糧) , 并降低油脂的使用, 可通過調節(jié)胰島素水平, 刺激IGF-Ⅰ的產(chǎn)生, 提高大卵泡的數(shù)量, 進而促進早期胚胎發(fā)育, 降低窩內體重變異系數(shù)。
2.2 蛋白質與氨基酸水平蛋白質具有多種功能和生物活性, 包括分子結構、營養(yǎng)生理、酶的催化、分子運輸、機體防御和其他相關功能。因此, 蛋白質在母體和胎兒的生長中同樣有著至關重要的作用[7]。
2.2.1 蛋白質水平研究表明, 后備母豬在配種后, 飼糧中只含有0.5%CP與含有13%CP相比, 在妊娠第40天或第60天時, 胎盤和子宮內膜精氨酸 (Arg) 、賴氨酸 (Lys) 、鳥氨酸 (Orn) 等堿性氨基酸的濃度降低, 丙氨酸 (Ala) 、谷氨酰胺 (Gln) 、甘氨酸 (Gly) 、支鏈氨基酸 (BCAAs) 、脯氨酸 (Pro) 、絲氨酸 (Ser) 和蘇氨酸 (Thr) 等中性氨基酸的濃度降低16%~30%;同時, 限制飼糧蛋白質水平可降低胎盤和子宮內膜中一氧化氮合酶 (NOS) 的活性、瓜氨酸的合成和Orn的濃度, 這些均可能降低母體運輸營養(yǎng)物質和氧氣到胎兒的能力, 對胎兒整齊度產(chǎn)生負面影響[23]。在妊娠早期 (063 d) , 與飼喂含13%CP飼糧的母豬相比, 飼喂含0.5%CP飼糧的母豬胎盤重顯著降低, 胎兒的生長受阻[24]。因此, 降低飼糧蛋白質水平可能降低了母體將營養(yǎng)物質和氧氣運輸?shù)教旱哪芰? 對初生仔豬窩內體重變異產(chǎn)生負面影響。
2.2.2 Arg研究表明, Arg家族在胎盤血管再生和發(fā)育過程中起到重要作用, 特別是在妊娠前期[25]。妊娠3540 d, 在豬尿囊液中發(fā)現(xiàn)有較多的Arg和Orn, 而這個時期正是胎盤快速生長階段[26]。
妊娠30 d時, 在后備母豬 (Camborough 22) 玉米-豆粕型飼糧[代謝能 (ME) :13 MJ/kg, CP:12.2%, 采食量:2 kg/d]中根據(jù)等氮原則分別添加1.0%Arg和1.7%Ala, 作為Arg組和對照組, 結果顯示, 與對照組相比, Arg組活仔數(shù)增加, 仔豬初生窩重顯著增加[27]。妊娠77 d時, 在母豬 (長白×大白) 大麥-小麥型飼糧 (NE:9 MJ/kg, CP:13.1%, 采食量:3.3 kg/d) 中額外添加25.5 g/d (0.77%) 的Arg, 結果顯示, 與對照組相比, Arg組初生重變異顯著降低[28]。楊慧等[29]從配種當天開始給母豬 (長白×大白, 2胎) 飼喂玉米-豆粕型基礎飼糧[消化能 (DE) :13.14 MJ/kg, CP:14.17%, 采食量:2.6 kg/d], 并根據(jù)等氮原則分別添加1.0%的Arg和1.7%的Ala, 作為Arg組和對照組, 結果顯示, 與對照組相比, Arg組窩產(chǎn)活仔數(shù)、初生仔豬窩重顯著增加。在妊娠30144 d, 在后備母豬 (長白×大白) 飼糧 (ME:13 MJ/kg, CP:12.2%, 采食量:2kg/d) 中, 根據(jù)等氮原則, 試驗組添加8 g/d Arg和12 g/d Gln (飼糧總含有1.1%Arg和1.8%Gln) , 對照組添加31 g/d Ala, 結果顯示, 與對照組相比, 試驗組母體血漿氨氮和尿氮含量降低, 活仔數(shù)增加, 活仔重增加15%, 仔豬出生重變異降低[30]。這些結果均表明母豬飼糧中Arg的添加有利于降低高產(chǎn)母豬窩內體重變異。
2.2.3 BCAAsBCAAs包括亮氨酸 (Leu) 、異亮氨酸 (Iso) 和纈氨酸 (Val) , 這些氨基酸是合成谷氨酸 (Glu) 和Arg的底物[31]。Zheng等選[32]用900只小鼠, 妊娠期限飼條件下飼喂添加BCAAs的純化飼糧, 添加Arg和Ala分別作為正、負對照組, 結果顯示, 窩產(chǎn)仔數(shù)、胚胎重和窩重均顯著增加;進一步分析發(fā)現(xiàn), BCAAs組通過增加胚胎肝臟中糖異生功能, 上調胚胎肝臟IGF-Ⅰ、子宮雌激素受體-α (ER-α) 和孕激素受體 (PR) 以及胎盤胰島素樣生長因子Ⅱ (IGF-Ⅱ) 的表達水平, 從而實現(xiàn)母體子宮和胎盤功能的提高, 這保證了胎兒的營養(yǎng)供給, 促進了胎兒整齊度的提高。
2.2.4 Arg和BCAAs對窩內體重變異調控的可能機制Arg在胎兒生長發(fā)育過程中的重要作用已經(jīng)被認知, Arg的添加可以增加一氧化氮 (NO) 和多胺的合成, NO和多胺在妊娠期起到關鍵作用, 其中包括胎盤血管的再生、胚胎形成等[33-34]。
豬胎盤中功能性氨基酸對調節(jié)蛋白質的合成起到重要作用。Arg在胎盤外組織中代謝為Orn和Pro。在胎盤內, Pro降解為Orn, 它通過鳥氨酸脫羧酶 (ODC) 合成多胺。ODC的表達需要Gln的作用。除此之外, 蛋白質的合成受哺乳動物雷帕霉素靶蛋白 (m TOR) 信號通路的調節(jié), Arg、Gln、Leu和Pro刺激m TOR信號通路。另外, Arg通過提高三磷酸鳥苷酸環(huán)化水解酶Ⅰ的表達, 刺激胎盤產(chǎn)生NO, 這是NO合成的關鍵步驟[30]。NO是重要的內源性舒張因子, 它對子宮和胎盤-胎兒血流起到重要調節(jié)作用, 有研究指出, NO和血管再生因子具有協(xié)同作用, 促進胎盤血管再生和提高血流速度, 這對于胎盤血管的生成和胎兒的生長是非常重要的[35]。
同時, Arg作為多胺和NO的合成前體[7], 在胎兒肌肉發(fā)育中起到重要作用。妊娠早期飼糧添加Arg可以增加妊娠70 d時次級纖維與初級纖維的比例[36]。NO阻止脂肪的產(chǎn)生, 刺激肌肉中脂肪酸和葡萄糖的氧化[37-38]。多胺在細胞增殖和分化中同樣起到重要作用, 調節(jié)胎兒肌纖維和脂肪細胞生長和發(fā)育[39-40]。NO和多胺、Arg和其他功能性氨基酸, 也通過m TOR信號通路, 調節(jié)胚胎和胎兒肌肉生長和發(fā)育[30], 這些對于保證胎兒的整齊度均起到一定的作用。
3 功能性添加物3.1 菊粉菊粉, 來源于菊苣的塊莖和洋姜, 是一種可溶性纖維的混合物, 可將其作為試驗的純化可溶性纖維。研究發(fā)現(xiàn), 23胎的母豬 (長白×大白) , 在等能等氮條件下, 飼糧中添加1.5%的菊粉, 結果顯示, 初生仔豬窩內體重變異顯著降低, 并且增加了1.01.5 kg仔豬的比例;進一步分析發(fā)現(xiàn), 在母豬和仔豬中, 添加菊粉飼糧顯著增加了血清中總超氧化物酶 (T-SOD) 和谷胱甘肽過氧化物酶 (GSH-Px) 活性, 顯著降低了丙二醛 (M DA) 水平[41]。而Richter等[42]對大鼠的研究中, 在低營養(yǎng)處理的雌性懷孕鼠的飼糧中添加褪黑素 (具有清除自由基和調節(jié)氧化通路的功能) 后血清中錳超氧化物歧化酶和GSH-Px表達水平增加, 胎盤效率明顯提高。這說明通過抗氧化劑處理妊娠母體, 可能提高胎盤的功能, 降低宮內發(fā)育遲緩 (IUGR) 的發(fā)生。是否可以通過提高母體的抗氧化狀態(tài), 提高胎盤效率, 保證初生仔豬整齊度, 還需要進一步的研究。
3.2 β-羥基-β-丁酸甲脂 (HMB)HM B作為Leu的代謝物, 可以促進骨骼肌中蛋白質的合成, 從而提高動物的生產(chǎn)性能[43-44]。研究發(fā)現(xiàn), 從母豬 (長白×大白, 3胎) 妊娠35 d開始直到分娩前, 在玉米-豆粕型飼糧中添加4 g/d的HMB, 分娩后總產(chǎn)仔數(shù)和活仔數(shù)沒有顯著變化, 但死胎數(shù)顯著降低, 除此之外, 仔豬初生窩重有增加趨勢, 并且低初生重仔豬 (小于1 kg) 比例從11.59%降到5.60%[45]。進一步分析發(fā)現(xiàn), HM B組肌生成因子m RNA的水平增加了, 包括肌肉調節(jié)因子4、肌生成分化因子和IGF-Ⅰ, 這些均可調節(jié)肌細胞的生成和增加仔豬次級纖維的比例[46-47], 從而促進胎兒肌肉的發(fā)育, 這為胎兒的進一步發(fā)育奠定了良好基礎, 有利于胎兒整齊度的提高。
3.3 N-氨甲酰-L-谷氨酰胺 (NCG)NCG作為尿素循環(huán)中鳥氨酸生成瓜氨酸的中間體N-乙酰谷氨酸 (NAG) 的代謝穩(wěn)定類似物, 是Arg內源合成限速酶, 氨甲酰磷酸合成酶-1的激活劑, 能促進Arg的合成[48]。
妊娠90 d母豬 (大白×長白, 胎次為3.2±0.7) , 在玉米-豆粕型飼糧 (M E:13.5 M J/kg, CP:14.7%, 采食量:2 kg/d) 中添加0.1%的NCG, 可以顯著增加仔豬初生窩重[49]。同樣, 在江雪梅等[50]研究中, 母豬 (長白×大白, 胎次為34胎) 從配種開始, 在玉米-豆粕型飼糧 (DE:12.55 MJ/kg, CP:13.68%, 采食量:2.4 kg/d) 中, 根據(jù)等氮原則, NCG組添加0.1%的NCG, 對照組添加1.7%的Ala, 結果顯示, 與對照組相比, NCG組窩產(chǎn)活仔數(shù)提高0.55頭, 仔豬初生窩重提高1.39 kg, 初生仔豬個體重提高了70 g;進一步分析發(fā)現(xiàn), 在妊娠第30天、第60天、第90天, 血漿中NO濃度顯著增高, 在妊娠第90天, 血漿中總一氧化氮合酶和誘導型一氧化氮合酶活性顯著增加。正如上文所述, NO對調節(jié)子宮和胎盤-胎兒血流起到重要作用, 同時, NO和血管再生因子具有協(xié)同作用, 可促進胎盤血管再生和加快血流速度, 這對于胎盤血管的生成和胎兒的生長是非常重要的。因此, NCG通過加快血流速度和提高胎盤效率, 從而為胎兒提供足夠的營養(yǎng)[51-52], 胎兒間營養(yǎng)物質供應變化較小, 仔豬初生窩內體重變異相應減少[13]。
4 小結卵泡發(fā)育、胎盤效率是胎兒整齊度的重要因素, 可通過營養(yǎng)措施進行調控。高產(chǎn)母豬配種前飼喂部分淀粉替代飼糧有利于提高血漿IGF-Ⅰ水平, 促進卵泡發(fā)育;妊娠期飼糧添加Arg或NCG有利于提高NO產(chǎn)量, 促進血管生成和養(yǎng)分運輸, 提高胎盤效率;部分功能性添加物也具有提高初生仔豬窩內整齊度的作用, 但其機制并不十分清楚?傊, 提高胎兒整齊度對提升現(xiàn)代養(yǎng)豬生產(chǎn)水平和效益具有至關重要的意義, 通過營養(yǎng)手段提高胎兒整齊度具有可行性, 但如何實現(xiàn)科學合理的營養(yǎng)策略還有待深入研究。
參考文獻:
[1]ZINDOVE T J, DZOMBA E F, KANENGONI A T, et al.Effects of within-litter birth weight variation of piglets on performance at 3 weeks of age and at weaning in a Large White×Landrace sow herd[J].Livestock Science, 2013, 155 (2/3) :348-354.
[2]BOULOT S, QUESNEL H, QUINIOU N.Advances in pork production:proceedings of 2008 Banff Pork Seminar[C].Banff:[s.n.], 2008.
[3]DAMGAARD L H, RYDHMER L, LOVENDAHL P, et al.Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling[J].Journal of Animal Science, 2003, 81 (3) :604-610.
[4]MILLIGAN B N, FRASER D, KRAMER D L.Withinlitter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights[J].Livestock Production Science, 2002, 76 (1/2) :181-191.
[5]BEAULIEU A D, AALHUS J L, WILLIAMS N H, et al.Impact of piglet birth weight, birth order, and litter size on subsequent growth performance, carcass quality, muscle composition, a nd eating quality of pork[J].Journal of Animal Science, 2010, 88 (8) :2767-2778.
[6]QUINIOU N, DAGORN J, GAUDRE D.Variation of piglets’birth weight and consequences on subsequent performance[J].Livestock Production Science, 2002, 78 (1) :63-70.
[7]KRAHN G T.Comparison of piglet birth weight classes, parity of the dam, number born alive and the relationship with litter variation and piglet survival until weaning[D].Master Thesis.Ames:Iowa State University, 2015:48-56.
[8]WILSON M E, BIENSEN N J, YOUNGS C R, et al.Development of Meishan and Yorkshire littermate conceptuses in either a Meishan or Yorkshire uterine environment to day 90 of gestation and to term[J].Biology of Reproduction, 1998, 58 (4) :905-910.
[9]BIENSEN N J, WILSON M E, FORD S P.The impact of either a Meishan or Yorkshire uterus on Meishan or Yorkshire fetal and placental development to days 70, 90, a nd 110 of gestation[J].Journal of Animal Science, 1998, 76 (8) :2169-2176.
[10]WISE T, ROBERTS A J, CHRISTENSON R K.Relationships of light and heavy fetuses to uterine position, placental weight, g estational age, and fetal cholesterol concentrations[J].Journal of Animal Science, 1997, 75 (8) :2197-2207.
[11]WIENTJES J G M, SOEDE N M, VAN DER PEETSCHWERINGC M C, et al.Piglet uniformity and mortality in large organic litters:effects of parity and premating diet composition[J].Livestock Science, 2012, 144 (3) :218-229.
[12]BROEKMANS F J, SOULES M R, FAUSER B C.Ovarian aging:mechanisms and clinical consequences[J].Endocrine Reviews, 2009, 30 (5) :465-493.
[13]VAN DER LENDE T, HAZELEGER W, DE JAGERD, et al.Weight distribution within litters at the early foetal stage and at birth in relation to embryonic mortality in the pig[J].Livestock Production Science, 1990, 26 (1) :53-65.
[14]YUAN T L, ZHU Y H, SHI M, et al.Within-litter variation in birth weight:impact of nutritional status in the sow[J].Journal of Zhejiang University Science B, 2015, 16 (6) :417-435.
[15]VAN DEN BRAND H, SOEDE N M, KEMP B.Supplementation of dextrose to the diet during the weaning to estrus interval affects subsequent variation in within-litter piglet birth weight[J].Animal Reproduction Science, 2006, 91 (3/4) :353-358.
[16]VAN DEN BRAND H, VAN ENCKEVORT L C M, VAN DER HOEVEN E M, et al.Effects of dextrose plus lactose in the sows diet on subsequent reproductive performance and within litter birth weight variation[J].Reproduction in Domestic Animals, 2009, 44 (6) :884-888.
[17]VAN DEN BRAND H, SOEDE N M, SCHRAMA JW, et al.Effects of dietary energy source on plasma glucose and insulin concentration in gilts[J].Journal of Animal Physiology and Animal Nutrition, 1998, 79 (1/2/3/4/5) :27-32.
[18]ALMEIDA F R C L, MACHADO G S, BORGES A LC C, et al.Consequences of different dietary energy sources during follicular development on subsequent fertility of cyclic gilts[J].Animal, 2014, 8 (2) :293-298.
[19]WIENTJES J G M, SOEDE N M, LAURENSSEN BF A, et al.Insulin-stimulating diets during the weaningtoestrus interval do not improve fetal and placental development and uniformity in high-prolific multiparous sows[J].Animal, 2013, 7 (8) :1307-1316.
[20]WIENTJES J G M, SOEDE N M, AARSSE F, et al.Effects of dietary carbohydrate sources on plasma glucose, insulin and IGF-Ⅰlevels in multiparous sows[J].Journal of Animal Physiology and Animal Nutrition, 2012, 96 (3) :494-505.
[21]VAN DEN BRAND H, PRUNIER A, SOEDE N M, et al.In primiparous sows, plasma insulin-like growth factor-Ⅰcan be affected by lactational feed intake and dietary energy source and is associated with luteinizing hormone[J].Reproduction Nutrition Development, 2001, 41 (1) :27-39.
[22]VAN DEN BRAND H, DIELEMAN S J, SOEDE NM, et al.Dietary energy source at two feeding levels during lactation of primiparous sows:Ⅰ.Effects on glucose, insulin, and luteinizing hormone and on follicle development, weaning-to-estrus interval, and ovulation rate[J].Journal of Animal Science, 2000, 78 (2) :396-404.
[23]WU G Y, POND W G, FLYNN S P, et al.Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation[J].The Journal of Nutrition, 1998, 128 (12) :2395-2402.
[24]SCHOKNECHT P A, NEWTON G R, WEISE D E, et al.Protein restriction in early pregnancy alters fetal and placental growth and allantoic fluid proteins in swine[J].Theriogenology, 1994, 42 (2) :217-226.
[25]WU G Y, BAZER F W, DAVIS T A, et al.Important roles for the arginine family of amino acids in swine nutrition and production[J].Livestock Science, 2007, 112 (1/2) :8-22.
[26]WU G Y, BAZER F W, TUO W B, et al.Unusual abundance of arginine and ornithine in porcine allantoic fluid[J].Biology of Reproduction, 1996, 54 (6) :1261-1265.
[27]MATEO R D, WU G Y, BAZER F W, et al.Dietary L-arginine supplementation enhances the reproductive performance of gilts[J].The Journal of Nutrition, 2007, 137 (3) :652-656.
[28]QUESNEL H, QUINIOU N, ROY H, et al.Supplying dextrose before insemination and L-arginine during the last third of pregnancy in sow diets:effects on withinlitter variation of piglet birth weight[J].Journal of Animal Science, 2014, 92 (4) :1445-1450.
[29]楊慧, 林登峰, 王恬, 等.飼糧中添加不同水平L-精氨酸對妊娠母豬繁殖性能及血液生化指標的影響[J].動物營養(yǎng)學報, 2012, 24 (10) :2013-2020.
[30]WU G, BAZER F W, BURGHARDT R C, et al.Impacts of amino acid nutrition on pregnancy outcome in pigs:mechanisms and implications for swine production[J].Journal of Animal Science, 2010, 88 (3) :E195-E204.
[31]REZAEI R, WANG W W, WU Z L, et al.Biochemical and physiological bases for utilization of dietary amino acids by young pigs[J].Journal of Animal Science and Biotechnology, 2013, 4 (1) :7.
[32]ZHENG C, HUANG C F, CAO Y H, et al.Branchedchain amino acids reverse the growth of intrauterine growth retardation rats in a malnutrition model[J].AsianAustralasian Journal of Animal Sciences, 2009, 22 (11) :1495-1503.
[33]FLYNN N E, MEININGER C J, HAYNES T E, et al.The metabolic basis of arginine nutrition and pharmacotherapy[J].Biomedicine&Pharmacotherapy, 2002, 56 (9) :427-438.
[34]WU G, BAZER F W, WALLACE J M, et al.BOARDINVITEDREVIEW:intrauterine growth retardation:implications for the animal sciences[J].Journal of Animal Science, 2006, 84 (9) :2316-2337.
[35]REYNOLDS L P, REDMER D A.Angiogenesis in the placenta[J].Biology of Reproduction, 2001, 64 (4) :1033-1040.
[36]BERARD J, KREUZER M, BEE G.Effect of dietary arginine supplementation to sows on litter size, fetal weight and myogenesis at d 75 of gestation[J].Journal of Animal Science, 2009, 87:30.
[37]FU W J, HAYNES T E, KOHLI R, et al.Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats[J].The Journal of Nutrition, 2005, 135 (4) :714-721.
[38]JOBGEN W S, FRIED S K, FU W J, et al.Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates[J].The Journal of Nutritional Biochemistry, 2006, 17 (9) :571-588.
[39]FLYNN N E, BIRD J G, GUTHRIE A S.Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine[J].Amino Acids, 2009, 37 (1) :123-129.
[40]MONTANEZ R, RODRIGUEZ-CASO C, SANCHEZJIMENEZ F, et al.In silico analysis of arginine catabolism as a source of nitric oxide or polyamines in endothelial cells[J].Amino Acids, 2008, 34 (2) :223-229.
[41]WANG Y S, ZHOU P, LIU H, et al.Effects of inulin supplementation in low-or high-fat diets on reproductive performance of sows and antioxidant defence capacity in sows and offspring[J].Reproduction in Domestic Animals, 2016, 51 (4) :492-500.
[42]RICHTER H G, HANSELL J A, RAUT S, et al.Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy[J].Journal of Pineal Research, 2009, 46 (4) :357-364.
[43]WHEATLEY S M, EL-KADI S W, SURYAWAN A, et al.Protein synthesis in skeletal muscle of neonatal pigs is enhanced by administration ofβ-hydroxy-β-methylbutyrate[J].American Journal of Physiology Endocrinology and Metabolism, 2014, 306 (1) :91-99.
[44]WILKINSON D J, HOSSAIN T, HILL D S, et al.Effects of leucine and its metaboliteβ-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism[J].The Journal of Physiology, 2013, 591 (11) :2911-2923.
[45]WAN H F, ZHU J T, SHEN Y, et al.Effects of dietary supplementation of β-hydroxy-β-methylbutyrate on sow performance and mRNA expression of myogenic markers in skeletal muscle of neonatal piglets[J].Reproduction in Domestic Animals, 2016, 51 (1) :135-142.
[46]CHRISTENSEN M, OKSBJERG N, HENCKEL P, et al.Immunohistochemical examination of myogenesis and expression pattern of myogenic regulatory proteins (myogenin and myf-3) in pigs[J].Livestock Production Science, 2000, 66 (2) :189-195.
[47]ZHANG W, BEHRINGER R R, OLSON E N.Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies[J].Genes&Development, 1995, 9 (11) :1388-1399.
[48]楊平, 吳德, 車煉強, 等.飼糧添加L-精氨酸或N-氨甲酰谷氨酸對感染PRRSV妊娠母豬繁殖性能及免疫功能的影響[J].動物營養(yǎng)學報, 2011, 23 (8) :1351-1360.
[49]LIU X D, WU X, YIN Y L, et al.Effects of dietary Larginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein[J].Amino Acids, 2012, 42 (6) :2111-2119.
[50]江雪梅, 吳德, 方正鋒, 等.飼糧添加L-精氨酸或N-氨甲酰谷氨酸對經(jīng)產(chǎn)母豬繁殖性能及血液參數(shù)的影響[J].動物營養(yǎng)學報, 2011, 23 (7) :1185-1193.
[51]GARDNER D S, POWLSON A S, GIUSSANI D A.An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus[J].The Journal of Physiology, 2001, 537 (2) :587-596.
[52]MCGRABB G J, HARDING R.Role of nitric oxide in the regulation of cerebral blood flow in the ovine foetus[J].Clinical and Experimental Pharmacology and Physiology, 1996, 23 (10/11) :855-860.

來源:母豬母儀天下之豬

如您養(yǎng)豬遇到問題,點擊給我們留言!

版權聲明:本站部分內容來自網(wǎng)絡,如本站轉載的內容禁止轉載或者設計侵權,請及時與我們聯(lián)系,我們核實情況后進行刪除!
投稿】【收藏】 【關閉】 【返回頂部
圖片新聞
豬保健品在線購買
文章排行
相關文章
推薦文章
養(yǎng)豬資料下載
養(yǎng)豬視頻
gg